Available online at www.sciencedirect.com

® JOURNAL OF
sc'““@m“” COMPUTATIONAL
e Sllles PHYSICS
ELSEVIER Journal of Computational Physics 191 (2003) 18-39

www.elsevier.com/locate/jcp

Finite difference heterogeneous multi-scale method
for homogenization problems

Assyr Abdulle **, Weinan E °

& Computational Laboratory, CoLab, ETH Zurich, CH-8092 Zurich, Switzerland
® Department of Mathematics and PACM, Princeton University, NJ 08544-1000, USA

Received 26 November 2002; accepted 6 May 2003

Abstract

In this paper, we propose a numerical method, the finite difference heterogeneous multi-scale method (FD-HMM),
for solving multi-scale parabolic problems. Based on the framework introduced in [Commun. Math. Sci. 1 (1) 87], the
numerical method relies on the use of two different schemes for the original equation, at different grid level which allows
to give numerical results at a much lower cost than solving the original equations. We describe the strategy for con-
structing such a method, discuss generalization for cases with time dependency, random correlated coefficients, non-
conservative form and implementation issues. Finally, the new method is illustrated with several test examples.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to the numerical solution of partial differential equations with coefficients in-
volving different scales. Direct numerical treatments of these problems are difficult due to the cost required
for resolving the smallest scale. Discrete scheme obtained in this way are often by far too expensive to be
solved directly.

Analytic treatments of these problems lead to so-called homogenized equations in which the multi-scale
problem, depending on small parameters, is replaced by an equation with non-oscillatory coefficients found
as a limit (usually in a weak sense) when the small parameters tend to zero. These analytical techniques have
been studied for many years (see for example [5,6], and the references therein). They can be successful for
several applications, but are limited by restrictive assumptions on the media.

From a numerical point of view, the homogenized equations have to be obtained first and then, one has
to solve the homogenized equations. It is often preferable to handle the original equations without the
intermediate step through homogenization. One reason is that the aforementioned approach eliminates the
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small scales that can be of interest. In classical homogenization, the recovery of the fine scale features is
done by using correctors, but these are of the same complexity as the original problem.

Numerical computation for homogenization problems was first studied by Babuska [4] for elliptic
problems and Engquist [9] for dynamic problems. Babuska proposed for a linear variational homogeni-
zation problem in one dimension to use a finite element method on a macro-scale grid but with modified
basis functions that are obtained from solving the original multi-scale problem with f = 0 as the right-hand
side. With this strategy, the basis functions capture the correct microscopic behavior. These ideas were
extended recently to higher dimensions by Hou et al. [14,15]. The methods based on this approach require a
cost that is comparable to that of solving the original problem on a fine grid.

Another strategy based on finite element methods is that of Schwab, Matache and Babuska [18,19], using
macro- and micro-shape functions on two-scale finite element space. The cost of this method is independent
of the micro-scale ¢ but it is up to now limited to problems with periodic micro-structure. For the analytical
treatment of homogenization equations, two-scale test functions were used by Nguentseng [17], E [7] and
Allaire [3].

Engquist and Runborg [10,11] proposed a method based on multi-resolution analysis with wavelet
projections and approximation of the discrete operator. For a given wavelet space, the discretized operator
originating from the oscillating problem is projected into a coarse subspace.

Neuss et al. [20] proposed a method based on a standard finite element setting and uses a two-grid al-
gorithm for the multigrid iteration. That is, the multigrid iteration start with the original equations (with
the small scales) but the direct resolution is done for the homogenized problem.

These aforementioned techniques seem to be limited to particular classes of problems. In this paper we
propose a new method, the finite difference heterogeneous multi-scale method (FD-HMM), for the nu-
merical solution of parabolic multi-scale equations. This method is based on the framework of the het-
erogeneous multi-scale method (HMM) introduced in [8], a general methodology for the efficient numerical
computations of problems with multiple scales. The goal is to build a method in a way that can be applied
to more general problems than classical homogenization, as for example for problem with time dependent
or random stationary (correlated) coefficients as well as for non-conservative problems.

There are two main components in the finite difference heterogencous multi-scale method:

e a macroscopic scheme evolved on a coarse grid (the grid of interest) with unknown data recovered from
the solutions of the microscopic model;
e amicroscopic scheme, in which the original equation is solved on a sparse (heterogeneous) spatial domain.

We describe in Section 2.2 the new finite difference HMM method, explain how to overcome
several issues that arise when implementing the numerical method, and give an algorithm for
implementing it. Finally, we give in Section 3 numerical examples to illustrate the performance of the
proposed method.

2. Finite difference and multi-scale problems

In this section, we first recall in Section 2.1 some of the basic theory of homogenization, which is an
important class of problem for our new method. We then describe in Section 2.2 the method, and give
several generalizations. Finally, we establish a consistency result for the method.

2.1. Classical homogenization of parabolic problems

For now, we consider the following multi-scale parabolic equation:
ou’

==V (A(E)Vus) in (0,7) x @, )
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u'=0 on (0,T) x 09, (2)
ug(()?x) = gs(x) € LZ(‘Q)v (3)

where u® = ué(t,x), x € Q CR? is a bounded domain, and A%(x) = A(x/e) = (A,-j(~))jfj:1 is real with
4;;(-) € L*(R?), uniformly elliptic, bounded and periodic in each of its spatial direction, i.e.,

(4(3)ee) zaeP, [a(Z)e<pie withap>0, )

Ao+ v+ La) = Ay - ), (5)

where we set y; = x;/¢ and A(x/e) = A(y). The functions 4,;(y) will be referred as y-periodic functions. To
simplify the notation we suppose in the sequel that /; = 1.

The variational problem associated with (1)-(3) admits a unique solution u* € L*((0,T); H}(€2)) and
dut /ot € L*((0,T); H1(Q)). If u* and 0u* /0t are in the aforementioned spaces, then u* is almost everywhere
equal to a continuous function from [0, 7] — L*(Q) so that the initial values (3) for #* make sense (see [16]
for details).

If we apply a standard finite difference scheme to Eq. (1) the discretization should satisfy Ax < ¢ if we
want to resolve the e-scale, which can be prohibitive if ¢ is small.

Classical homogenization theory tells us that (see [5, Chapter.1.2; 6, Chapter 11])

u* — u”  weakly in L*((0,T); Hy), (6)
where u° is the solution of the so-called homogenized problem

ou® 0o 0N -
E:V~(AV14) in (0,7) x Q, (7)
=0 on (0,7) x 0Q,

u’(0,x) = g°(x) € L*(Q),

where we assume that g° — g%(x) weakly in € L?(Q), and 4° is a constant matrix given by

A = /y (A,-,-(y) + ZAik(Y)%i (Y)> dy, (8)

where Y = (0, l)d (we suppose A(y) is 1-periodic in yy, ..., y,s) and y/(y) are given by the solution of the cell
problems

43 d oy a3 '
Z_~<2Aik6_;>__;a_%‘4fb j=1,....d,
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This gives in variational form
/V;{’AVU dy = f/(Aej) Vody Wve pcr(Y) j=1,....d, (10)
Y Y

where (ej);l | is the canonical basis of R? and Woe(Y) = {v € H} (Y); [, vdx = 0}, where H],,(Y) is defined

as the closure of C;;r( Y) (the subset of C*(R?) of 1-periodic functions) To obtain Eq. (8) we make the

following ansatz for u*:
¢ 0 X 2 x
u’(t,x) = u’(t,x) + euy (t,x,;) + & uz(t,x,g) + ey (11)

where the functions u;(z,x,y) are periodic in the variable y for any 7 and x (see for example [5, Chapter 1]).
The formal procedure is then to insert (11) in (1) and to compare the power of &. We find that u°(¢,x)
satisfies Eq. (7) and u, is given by

1(tx,y) = Z/c’ ax 1,%), (12)

j= J
where y(y) is given by (9). For the flux defined by p*(¢,x) = 4(x/e) Vu, typical convergence result is (see [5])
Pt x) — A"V weakly in (L2((0,T); Q))". (13)

Remark 1. The classical homogenization theory still applies for non-uniformly oscillating coefficients
A;j(x,x/¢), but then the cell problem depends on the location x, and A° becomes space dependent 4°(x).

2.2. Finite difference HMM

To handle multi-scale problems with finite difference methods, we propose a “heterogeneous” discret-
ization which cares about the fine scale only on small representative region of size ¢ of the spatial domain. In
the following we describe in detail the algorithm sketched below, extend it to more general situation such as
non-conservative problems, random correlated coefficients and time dependent coefficients. Finally, we give
consistency results for the proposed method.

Let us first give a short overview of the strategy before giving a more detailed description. We consider
the domain Q = [0, 1] x [0, 1] (for simplicity) of R* and discretize it with a coarse equidistant mesh (xy;, x,),

i,j=1,...,N, for which Ax = ;41 — Xxi; = X2;11 — Xx»; is much larger than .
The idea is to evolve a macroscopic model for the flux form of the parabolic equations (1)—(3)
ou
=V:P, 14
3 (14)

on a coarse grid with large time step, where P(t,x1;,x;) = (P, P,) is estimated by solving the original

equation around (xy;,x;) in small representative regions. Notice that a macroscopic model is known to exist

from the homogenization theory. The goal is to estimate it by considering only the micro-scale equations

(D).

Suppose that at time # we have a numerical solution of Eq. (14) on the coarse grid (xy;, x2;) = x;;, denoted
by Uj;. To find the coarse solution Uj;*" at time "' we proceed in three steps:

(1) For each x;;, solve Egs. (1)—(3) on four &-cells TR P defined in (15) (see also Fig. 1), with corre-
sponding solution u obtained by a finite difference method on fine spacial grid (which resolves the ¢ scale)
for a small time step 6. The boundary conditions are such that u(z,x) — U*(x) is e-periodic, and the initial
conditions are given by U*(x), a linear reconstruction of the coarse solution U* (on each e-cell).
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& & X_{2j)

X_{1i}

Fig. 1. &-Cell (black boxes) at the coarse point (xy;,xz).

(2) Compute

vp, — P;ﬁl/zj - E‘kl/ZJ'ZfojJrl/z - Pqu/z — Ry (Y,
where P, and P}, are averages of the micro-scale flux computed with the numerical solution u
given by step 1 over I, and I}, , ;, respectively. Similarly, P, /> and P, /> are the average of the
micro-scale flux computed with the numerical solution u over [/, , and I;, , ,, respectively.
(3) Evolve the equation dU* /0t = F(U*) on the coarse mesh (xj;,x,;) with a large time step Ar.

Standard finite difference methods would consists in discretizing the whole domain with the microscopic
model and evolve the equations on it. Thus it would produce a large number of equations (if ¢ is small
compared to Q) difficult to solve numerically. For the proposed finite difference heterogeneous multi-scale
method (FD-HMM), based on the aforementioned coupling, the main numerical work will consist in
solving the microscopic model. But this is only done on small sub-domain of the original domain. Since the
microscopic cell problems are independent, they can be solved in parallel, which is another advantage of
that method. Notice finally that for the FD-HMM the number of equations for solving the cell problems
does not depend on ¢, since the e-domain decreases if ¢ decreases.

We describe now this algorithm in more detail. To simplify the notation, we will usually skip the upper
index corresponding to the time when it is not relevant.

Step (1) Cell problem
Let us define d_ = (Ax — ¢)/2,d;. = (Ax +¢)/2 and four e-cells around each point (x;,x):
1;1/2‘/ = [xu + d,,xl,- + d+] X [xzj — 8/2,)(2]' + 8/2],

1

Iij:tl/z = [XU — 8/27X1[ +8/2} X [—ij :l:d,7.xz]‘ :l:d+]

1

(15)

We will solve the original equation on a small grid which resolve the ¢ scale, i.e., we resolve the &-scale on a
e-domain. The small grid is defined by

k1) = (&, &), k1=0,....s, where§m=$+m5, (16)

and where A¢ = ¢/s, and s is an integer chosen so that A¢ resolves the e-scale.
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In the sequel we denote /* = I}, J2je1j2 @ cell given by (15) and we will skip the dependency on the index
i+1/2,j+1/2 if no confusion can occur. On each such cell we discretize (1)~(3) by the method of line and obtain
the semi-discrete equation

d 1

$uk1/=@ﬂ,(t) k,l,:L...,S, (17)

where Fy, is a finite difference discretization of V - (4°Vu(x,x);)) (for example the 5-point stencil provided
A* 1s diagonal, the 9-point stencil otherwise).

To start the evolution with the cell problems, we need initial values and boundary conditions which are
not known for the cell problems.

(1) Reconstruction for initial values. We define initial values for the cell problems by a reconstruction from
the values on the coarse grid, U; whose values are given from the previous step or from the initial values.
The simplest reconstruction is a linear one on each cell. For example for the cell /7, , ,,

U, ~ U,
uy = Ui_1; + 51JT117

where £k =0, ...,s, and ¢, is defined in (16). We will also consider U(¢&,,, £,) for the same reconstruction,
with (&, &,) defined by (16) (but on [x;_i,x;], where m,n can be >s and also <0).

(i1) Boundary conditions. Next, we need boundary conditions for the cell problems. The natural boundary
conditions to recover the macroscopic input data from the microscopic computation are analogous to the
cell problem of the homogenization problem (see Section 2.1). This will be made clear in Section 2.3. We
will use the following boundary conditions for the micro-scale solver:

Ug,—1 = uk,sfl + U(éka é—l) - U(éka ésfl)v k = 17 cee S,
us+l,l - ul,l + U(éwla él) - U(éh 61)a l = 17 ceey S,

with similar formulas for u_,; and w1/ =0,...,s and where U(&, &;) denotes the linear reconstruction
(18) for the the values U;; on the coarse grid.

Another possibility would be to consider a discrete version of f, Vudé = f, VU dé&, which is a weaker
form than (19).

(i1) Exact cell problem. In the sequel we will also also denote by (see also (43))

I'T(t + 57 ék? él) (20)

the solution of Egs. (1)—(3) at time # 4 6 over the cell /° with linear initial conditions given by the recon-
struction (18) and boundary conditions such that #* — U is ¢-periodic (similar to 19). By standard error
estimates for semi-discrete approximations we have

(2, &, &) — up (1) < C(AE). (21)

[=0,...,s, (18)

(19)

Step (2) Flux computation

For the flux computation, a point-wise flux approximation p*(z,x1;,x2;) ~ A*(x1;,%2;) Veu; may not work
for dimension higher than one (V. denotes the finite difference approximation of the gradient). An example
is given in [8, Section 6.3] which shows that the flux defined in this way may not converge to the flux of the
homogenized equation for ¢ — 0. The new idea here, suggested by Lemma 3 given in Section 2.3, is to
compute an average flux over a ¢-cell. For each cell I* = I, , .., we will compute an approximation of

A 1 .
P= /ISA(f/a)Vu (t+6,8) dE, )
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where #° is the solution defined in (20). Thus, having computed an approximation uy,; of @°(t + 0, &y, &)

in each cell I, ;.. i,/ =1,...,N, by step 1, we compute a discrete version of (22) written for the cell
Iy
AS? ¢\ Uk10 — Uy Up1+1 — Uk
Piyp;= ( 2) Z <A11(6k+1/27gl)+A—+A12(ék7 §1+1/2)+ ) (23)
s ¢ <

and similarly for the other quantities P = P.11/211/> corresponding to the cells 17, » ;.-
(i) Flux equilibrium. To compute the average (23), we have to evolve the original equation (14) on the &-
domain for a micro-time step 6. By Lemma 3 we know that

P:

|11£| / A(E/)ViE(+6,8) dE — AVi(t + 6,8), & — 0, (24)
g

where & is the center of the cell /¢, 4° is the homogenized matrix given by (8) and u° is the solution of (7).
The solution of the homogenized equation (7) has a steady-state flux A°Vu°(¢,x) = C(x), for linear initial
values and the periodic boundary conditions (19). Thus by Eq. (24), P is nearly constant for small &. But the
reconstructed initial values (and the boundary conditions) can introduce transient before the computed flux
P approaches a quasi-stationary state (see the numerical experiments in Section 3). The micro-time ¢ should
be chosen so that the micro-solution reaches a quasi-equilibrium. It is discussed in [§8] that (for one-di-
mensional problems) the “relaxation time” is of order O(¢?).

(i1) Micro-time evolution. To reach this quasi-equilibrium state, we evolve the ODE (17) with a Runge—
Kutta method over small time steps J,, from Az to At + 6, where 6 = ad,. The value u,f,’*é ~u(At+9,...)
will be used to approximate the flux on /¢ at time Az. That is, 6 does not contribute to the time evolution (we
should have 6 < A¢).

The estimation of d can be implemented in an automatic way. At the first evaluation of the microscopic
equations we estimate 4 by finding the first o such that

|P(t+ (o0 + 1)0,) — P(t + ap9,)| < tol (25)

for a given value of tol, and we choose ¢ = 9. )

Then the numerical solution of (17) denoted by u};° will introduce a time error, which for the the simplest
Euler method is of order O(J,) (after oy steps). And the the estimate (21) becomes for the fully discrete
scheme

la(t + 0, &, &) —uj | < C(0 + (A§)2)~ (26)

Step (3) Time evolution on the coarse grid
The time evolution on the macroscopic grid is now done via the approximation

AUy  Pupy =Py + Py — Py
W (t) = 2 l/z‘j;x L2 SR = Ej(tv U)’ 17.] = 17 e aNa (27>

where P1/2j11/2 1s given by (23). Notice that Eq. (27) can be written in the form of an autonomous ordinary
differential equation

il—(j(t) =VP=FU(t), F:RV =R, (28)

where F is defined by (27). Notice that F is continuous (differentiable) if the coefficients Afj(x) of (1) are
smooth enough. Indeed, F is a composition of continuous (differentiable) maps
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F- RN2—>RSZ-2N(N+1)—)Rsz-ZN(NJrl) - RNZ
' reconstruction ODE solution flux estimation ’
Time evolution with Runge—Kutta methods. The simplest fully discrete scheme which evolves the coarse
solution from time step # to | = # + At is given by the Euler method
K+l _ pk ok
Uy = Uy +Ar-Fy, (29)
where Flf = F;(U*). To implement a higher order m-stage explicit Runge-Kutta method, we have to
compute successively the functions

i—1
Kl:F<Uk+Zalej>7 1217,’7’17 (30)
J=1

at intermediate stages K;, where K; = F(U*) (see [12, Chapter 2] for details). For each evaluation of the
intermediate stages K;, we need to evaluate the function F with the algorithm explained above.

2.2.1. Generalization

In the following, we show that the same ideas as explained above apply, with some modifications, to
more general situations as non-conservative problems, random stationary correlated coefficients. They also
apply readily for time dependent coefficients.

2.2.2. Non-conservative problems
Consider for example

ou’ x\ 0%t

~, = ij 'y )AL AL WM t ) 31

ot I.Zjaj(x s)@xl 6x2(x ) (31)
where x = (x,x,). We can think of the macro-scale model, the homogenized equation, abstractly as

oUu

—F 32

= F(U), (32)

where F is some unknown linear operator. For the macro-scale scheme, we choose an ODE solver, for
example the Euler method

Ukt = Ub + MiFy(UY), (33)

where F;(U*) is an approximation to F(U*) at the (i, j)th grid point x;.
Our next task is to estimate F(U*) in order to give an expression for F;;(U*). This can be done as follows.
Step (1) Cell problem. Reconstruction: from {Ul.’j.}, the known numerical solution at time step #, re-
construct a piecewise quadratic polynomial U*(x), such that (written here for the x; direction)

B e il i—1j
Ulley) = Uy, ) =——54 " o
k k k
CUE 2 Uiy 220 Unyy (39)
axz ij sz ’

Solve (31) on the domain [°=x;+ ¢/, where [ =[-1/2,1/2] x [-1/2,1/2], with initial condition
u(x, ") = U*(x), and boundary condition so that u(x,¢) — U*(x) is periodic with period &l.
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Step (2) Force computation. Compute a discrete version of

1 x\ Ot
T kY - k
B0 =1 | ;a(x,s) S (6 0) d, (36)

for suitably chosen 9, where u is the solution obtained at Step 2 and where |I¢| denotes the measure of /°. «
should be chosen such that Fj;(U*) reaches a quasi-stationary value (see subsection Micro-time evolution).
Step (3) Time evolution on the coarse grid. Evolve (33) on the coarse mesh with a large time step.

2.2.3. Random coefficient

The FD-HMM method can be applied for some problems with random coefficients. For example in the
case where the random coefficients a®(x) are known to have a correlation length . Step 1 of the method applies
without modification, either as described above (non-conservative equation) or as described previously.

For Step 2, the ¢-cell, whose size was given in the periodic case by the length of the period is now given by
the correlation length. Unlike the periodic case, one should consider the microscopic solver on domains
larger than one cell in order to have enough information from the microscopic equations (see numerical
example in Section 3).

Finally Step 3, the evolution of the ODE on the coarse mesh can be done similarly as explained above.

2.2.4. Time dependent coefficients

The FD-HMM applies readily for time dependent coefficients A4%(x,t), in conservative or non-conser-
vative problems and also in the case of random coefficients. In these situations, at each coarse step, the
algorithm for computing the flux or the forces has to be applied.

2.2.5. Estimation of the macro-scale coefficients

In some situation, for example for time independent coefficients, it is only necessary to apply the mi-
croscopic solver once. Indeed, knowing P, (an approximation of the flux 4°Vu" of the homogenized
equation) and u; on a cell (after applying the microscopic solver), we can estimate the coefficients (4;;) of
the unknown macroscopic model

dUu

For example we obtain 4,4, by solving a linear system for two different cells around (xi;,x;),
P1 :A1161U +A1262U on Iiirl/Z,j’ (38)
ﬁ] :A11610+A12620 on 1;._1/1]-, (39)

where P = (P, P,), P = (P, P,) are the computed flux with the microscopic solver on the cell Iy and

Ir, 20 respectively, and U is the macroscopic available solution. Similarly we get the entries 4,1, 45).

2.2.6. Recover the small-scale information

It can sometimes be of interest to recover information about the small scale at some points outside the
coarse mesh.

Let Ax = x;; — x;_1; be the size length of the coarse grid mesh. Let uy,, be the solution of Eq. (17) on the
cell x;_1/»,; + & - [-1/2,1/2], where the index /, corresponds to the index of the middle of the cell with respect
to the x, axis. We extend periodically the obtained micro-scale values uy, on [x;,_1,Xy;] as

ﬁmlo = U(ém7 510) + (ukm.lo - U(ék”” 510))5
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where form € Z, k,, € {0,...,s} is given by k,, = m(s + 1) and U(¢) is given by the reconstruction defined
in (18).

2.2.7. Summary of the algorithm
We summarize our algorithm for the solution of a parabolic multi-scale equations on a domain Q: define

a coarse discretization (xy;,xy),7,j=1,...,N of the domain @, and 2N (N + 1) cells /* (see Fig. 1) with

length and width of size comparable to ¢, discretized with (&,;,¢&,,), [, m=1,...s.

(1) Solve the original equation on each cell /¢, with initial solution given by the piecewise linear reconstruc-
tion (18) in case of conservative problem and piecewise quadratic reconstruction (34) in case of non-
conservative problem, with boundary conditions (19).

(2) Compute the flux approximation (23) or the force approximation (36).

(3) Evolve the ODE of the macroscopic model (28) or (32) on the coarse mesh (xy;,xy;), i,j=1,...,N

The first saving in computation time in the FD-HMM strategy is achieved by reducing the computation
of the micro-scale on micro-domain (step 1). Notice that each e-cell computation is independent, so that the
computation of the e-cell problems can be done in parallel. Since the macro computation (step 3) is very fast
the parallel implementation can highly speed up the computation time.

2.3. Consistency results

The error between the results given by the FD-HMM and the homogenized equation several parts:
o the error between the estimated flux and the homogenized flux;
e the error given by the macro-scale solver.
We will, as suggested in [§8], compare the solution given by the FD-HMM method (see (29))

l];(j‘*’l Uk—f—At Ej(? (40)
with a macroscopic scheme
U;;H Uk+At F,fv (41)

chosen such that the micro-scale solver in the algorithm (on the ¢-cell) is replaced by the solution of the
homogenized equations, on the same &-cell with the same boundary conditions (19). As in (27), we write
Bk
f Plipy— 1/2, +kaj+1/z u 12 (42)
ij Ax ’
where P, will be explicitly given (see 44).

The analysis given in [8] is done for the parabolic case in one dimension using a different approximation
for the flux as in the FD-HMM and cannot be generalized to higher dimension. We discuss here the case of
higher dimension, with the new flux approximation (22).

Let us write

2
U= (U,..., Uy, ..., Uyts .., Uw) " € RY.
For the flux
Pirppje1p(UY) and  Puijojur2(UY),

given by (27) and (42), respectively. In the sequel we will skip the dependency toward U* and denote the
time dependency # as a superscript P¥, P*. We will also denote by C a generic constant whose value can



28 A. Abdulle, W. E | Journal of Computational Physics 191 (2003) 18-39

change at any occurrence but depends only on the quantities which are indicated explicitly. By (27) and (42)
it is sufficient to estimate |PY, , .\, — Py el

Let # be fixed and U* be the solution given by the FD-HMM at time #*, and U*(x) be the piecewise
linear reconstruction of this solution given by (18). Recall that in (20) we have defined #* the solution

of

L=V V), (t,x)e (1 40)x B jar o

@ — Ut(x), e-periodic on Ify, 1o, (43)
a(tt,x) = Ut(x),
where I, 2j+1)2 is a e-cell defined in (15) and § is the relaxation time (see (25)). To simplify we will skip the
dependency on the index ;11/5j+1/2 When no confusion can occur.
Let U*(¢,x) be the solution of the above problem but with 4* replaced by 4° the homogenized matrix

associated to (1)-(3). Then for these linear initial conditions, U*(z,x) = U*(x). Thus if we define
Py (x15,%2;), Py (x15,X27) " = A°V U* (x11,x5)), the flux of Eq. (42) is given by

13,'1;1/2,; = Pi(x1; £ Ax/2,x;;) and [_)i];':tl/Z = Py(x15, 325 £ Ax/2). (44)

To be well defined, the scheme (42) needs to be stable. If we transform the constant matrix 4° in diagonal
form (recall that 4° is symmetric), the scheme (42) can be written as

At

Ukl = OF + .
(Ax)

SU*, (45)

where S is a N> x N? matrix. The above scheme is stable if for all eigenvalues 4; of S, we have

Let us define the space of functions

W(I*) = {u € H;er(lﬂ);/ vdx = 0},
1(2
where H) (/%) is defined as the closure of C5, (I°) (the subset of C>(R?) of e-periodic functions) for the H'
norm. By the change of variable y = x/¢ we have corresponding spaces over the domain ¥ = (0, 1)2 for 1-
periodic functions.
Multiplying (43) by test functions in W (/¢) and integrating by part we obtain that #° satisfies at ¢+ ¢
Vz e W(I°)

B(i,z) = AA(x/e)Vﬁg(tk +6,x)Vz(x) dx = —/I wz@) dx. (46)

In the sequel we set A(x) = 0a*(* + ,x)/0¢, and we skip the dependence on 7. We will call 6 the relaxation
time. It is the time (if it exists) for which «° reaches a quasi-stationary value. Notice that #° — U* is periodic
on /% and we set

i@ = U+ and ¢:(¢_/_¢dx>ewm. (47)
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Assumption. In the sequel we assume that

oir° .
(A)  h()i= o le+6,) €17(F) and [l = 1y <o,

where 7; depends on the relaxation time 6. If u* reaches a quasi-stationary value for  — #* + § then 55 — 0.
Numerical experiments (see Fig. 2 in Section 3) indicates that the relaxation time is of order &*. This was
discussed in [8] for the one dimension case.

We next define another function #° which will be used in the following analysis. Let a° € U* + W (I) be
the solution of

B z) = / A(x/e)VieVzde =0 Yz € W(I°). (48)
]«‘:
This can be reformulated as follows: find y/ € W(I?), j = 1,2 such that (see (10))

/FA(x/S)V<x/’%ljk>Vzdx: —AA(x/s)(q%—T)Vzdx Vz e W(I). (49)

J J

Using (49) a direct calculation shows that #* = U*(x) +8ng:1 %/ (x/e)(QU*(x)/0x;). Then, integrating
A(x/e)Vi* and using (8) we find

1
W /ASVL?’“‘ dx = AOVUk7 (50)
18

where 4° is the constant matrix given by (8).
To estimate |PY, , .1, — Py jei o] We start with the following lemma.

Lemma 2. Assume assumption (A) holds. Then we have

[la° — 'f”H‘(F) SCVIEe,
where i°, ° are given by (46) and (48), respectively, and |I°| denotes the measure of I*.
Proof. Let x; € I°. We have

ol — i |2 < B — it i — @) = B, i — @) — B, — i) = B, — 1)

= [ pes [ meora) ([ 16— 0Pa) < I i~ @l
/ (fopor as) ([ 16 ntas)

where || [|;1,.) denotes the usual norm on the Sobolev space H'(I°) and where we have used assumption (A).
We have also used that V(i — &) = V(¥ — y) and thus B(#, 4 — #°) = 0 from (48). Then dividing by
|4 — @[ sy gives the result. [

In the next lemma we estimate the difference between the flux given by the HMM scheme with the flux of
the macro scheme given by (42).

Lemma 3. Assume assumption (A) holds. Then we have

’(11 /A*‘Vﬁ*’ dx —AOVU">
1¢ i

where i = 1,2 denotes the coordinate of the flux.

< Ce, (51)
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Proof. We define w = #* — #*. Using (50) and Lemma 2 we obtain

(g v as—avv) = (5 AA(E)VW“>i
e </Z v axj )’

m([EEre) ([l

)

ax,
1 x\ 2 172
ST (  max|as ()| d") 1Vl
SC—=|IV(@ = &)|| 20y S C—= 18" — &"| 1 1o < C, (52)
\/|1| \/|1|
where we have used Lemma 2 in the last inequality. O
We will now estimate the difference between U*t! and U**!. Let us define
k 1 Vv
Py (x1i21/2, %) = |16| A*Vutdx |
i1/2 1
k 1 g ~E
P, (x1i7x2jj:1/2) = |p| ANVu'dx |
i P
and
szil/Zl = P1k(xli + Ax/2,x5) and Pil:/'il/z = sz(xlivx2j + Ax/2). (53)

The flux of the FD-HMM method is the discrete version of (53) (see 22). We can use standard estimates for
the error between the true solution and the numerical solution of problem (43), since for the flux ap-
proximation on the e-cell we resolve the small-scale (see also the estimates (21) and (26)). We suppose in the
sequel that the macro solution U} is computed with fluxes P | J2,41/2 given by (53).

Theorem 4. Assume that assumption (A) hold, that U0 U0 and that the scheme (41) is stable. Assume also
that U5 is obtained with fluxes Pi1/2ji1/2 given by (53) for k=1,...,n. Then we have

n r7n C

where T = nAt.

Proof. To estimate the difference between (40) and (41) we have to estimate the difference
|P* Y21 )2 P.’;l/z.jﬂ/ﬂ. Using Lemmas 2 and 3 we have

1

k 5 k
|Pii1/2,jil/2 - Pik;tl/Z,jil/Zl < Cl,
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where C* is given in Lemma 2. Thus |F} — Fjj| < C*e/Ax. If we define C = max;<, C/, we obtain for the
difference the schemes (40) and (41)
<

k+1 rrk+1
|(]ij - Uvij < Ax

and by induction

C

B TS,
where T = nAt. O

U = Uyl <

This result shows that the FD-HMM is consistent (under the hypothesis (A)) with the macro-scale
scheme obtained by using the homogenized solution for the micro-solver.

In Section 3 we will give numerical results which show the dependence on ¢ and on the space discreti-
zation of the error between the FD-HMM and the homogenized solutions.

3. Numerical experiments
In this section, we discuss the application of the proposed algorithm at several examples.
3.1. Implementation

The algorithm of Section 2.2 has been implemented in a FORTRAN code. Since we are interested here
to investigate the algorithm, we implemented a simple scheme for the macroscopic equation, that is the
Euler forward method. It can be generalized to higher order methods. We also for the same reasons did our
test with constant step size. For the microscopic solver, there are some situations (two dimensions, very
small &) where even for a very short time and a small domain it is advantageous to use a method with more
stability (the eigenvalues of the Jacobian increase quadratically with the mesh size). If we want to keep
explicit methods, then Chebyshev type methods (see [1,2] and also [13]) are indicated. They are explicit
Runge-Kutta methods with extended stability regions along the negative real axis, suitable for the time
integration of (space) discretized parabolic equations.

Comparison. Because it is difficult to construct interesting multi-scale problems with an exact solution, we
will compare the result obtained by the FD-HMM with a computed reference solution which resolves the
small scale. The Chebyshev method ROCK4 (see [1]) has been used for computing reference solutions via
scale resolution. We will often refer to this solution as the “exact” solution. In one dimension (for the period
case, where the oscillating coefficient is time independent), the homogenized equation is easy to compute. In
this case, we will compare our obtained result with the reference and the homogenized solutions.

As a measure for the error we take the relative Euclidean norm and the maximum norm

N 2
€Iry = ;];(W)7 errOO:l_Ell?f(N|U,-—U(x,-)|, (55)

respectively, where U(x;) denotes the reference solution (or the homogenized) solution projected on the
coarse mesh.

For all computations with mesh refinement, we did a projection on the coarsest grid and compute the
error on that grid (usually N = 9 for one dimension and N = 81 for two dimensions).
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Flux equilibrium

flux value

0 L L L L L | L | I
0 0.1 02 03 04 05 06 0.7 038 09 1

time x107

Fig. 2. The average flux P(¢) = >, a*(x;)(d/dx)u(z,x;) for the first ¢ cell.

3.2. Example 1: periodic coefficient

Consider the following model problem in one dimension

u(1,x) = % (a”(x) %uﬂ(t,x)), (56)

where a(x) = 1.1 + sin(2nx/e), ¢ = 1072, with initial condition

u(0,x) = 10x(1 — x%), (57)
and boundary conditions

u(¢,0) =u(t,1) =0 (58)

for0<x<land 0<r<I.
The homogenized solution is computed from Eq. (56), where the oscillating coefficient a* is replaced by
its weakly convergent limit (see (8))

-1

! 1
a(/o 1.1+ sin 2my dy) ' (59)

For this problem, the homogenized and the reference solution, computed on a grid with Ax = 1/2000, are
very close for the chosen ¢. The error between both solutions is err, = 8.7 x 107> and err,, = 2.4 x 107 for
the weighted Euclidean and maximum norm, respectively. For the computation of the flux, we proceed as
explained in Section 2.2. We see in Fig. 2 that after a short transient P(¢), the microscopic flux is quasi-
stationary. We choose the value # = 3E -5 for the micro-time step.

The coarse solution is evolved on a spatial grid of nb interior points, thus Ax = 1/(nb + 1). For the ¢-cell
computation on nb + 1 domains of length ¢ = 0.01, we solve the original equations with a mesh of size
A& = g/nres. The main cost in the FD-HMM is the solution of the (nb + 1) cell problems and the number of
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equations for it is (nb + 1) x (nres + 1). Notice that it is independent of &. For example if nb =9 and
nres = 20, it leads to 210 equations, while for the resolution of the original equations by standard FD
methods and with the same fine resolution as used in the micro-solver, it would need 1999 equations.

The time evolution of the solution (from ¢ = 0 to ¢t = 1) is done in 1000 steps, so that the coarse time step
is given by At = 1 x 1073. We plot in Fig. 3 (left picture) the results at ¢ = 1 for the reference solution and
for the solution of the FD-HMM. We see that the FD-HMM is able to approximate the exact solution on a
coarse grid. The computational cost is much lower than a traditional method which would require the full
resolution of the e-scale. In Fig. 3 (right picture) we plot a similar computation but for a refined coarse
mesh with 19 interior points. We see that the error decreases.

We now show the results of several experience with this simple equation, useful for the understanding of
the algorithm and the accuracy of the FD-HMM which was discussed in Section 2.3.

First if we take smaller time step for a given mesh the method converge to the underlying ordinary
differential equations (quite slowly due to the first order of the method). The error with the homogenized
(or the reference) solution does not decrease (see Table 1). Notice that for a higher Runge-Kutta method, it
would converge much faster to the underlying ODE.

Next we refine the coarse mesh. Until the error introduced by the spatial discretization is larger than the
error introduced by the reconstruction and the flux, the error decreases. It later reaches a point where

Exact and FD-HMM solutions Exact and FD-HMM solutions

0.035 T v , 0.035
- exact _ exact
0.03r -0 FD-HMM 0.03r —0 FD-HMM 7
0.025¢ 1 0.025F
- 0.02 o 0.02f
30015 30015
0.01H Cparsestep:1E-O3 | 0.01} anrsestep: 1E-03
Micro step : 3E-05 Micro step : 3E-05
0.005¢ 1 0.005¢
Error (rel. eucl.): 2.34E-02 Error (rel. eucl.): 4.87E-03
L L L L O( 1 L L
% 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1
X-axis X-axis

Fig. 3. Exact and FD-HMM solutions for u, = (d/dx)(a*(x)(d/dx)u®).

Table 1
Error between homogenized solution and FD-HMM for decreasing time step Az = 1/nstep, nb = 9 coarse points (spatial discretiza-
tion), ¢ = 0.01

nstep Error (Euclidean) Error (maximum)
1000 2.3372 x 1072 6.5479 x 10~
5000 3.1686 x 1072 8.8773 x 10~

10,000 3.2728 x 1072 9.1690 x 10

20,000 3.3248 x 1072 9.3149 x 10~*

30,000 3.3422 x 1072 9.3635 x 107*
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further refinement gives no amelioration (see Table 2). Here we took nstep = 30,000 (due to the first order
of the RK-method) in order that the time error does not interfere with the other errors.

We finally decrease ¢ to 0.005 and we see in Table 3 that the error keeps decreasing for finer mesh size
than before. As explained in Section 2.2, for time independent oscillating coefficients, the micro-solver can
be applied only once.

Time dependent coefficient. We take the same example as before but with add a time dependency in the
oscillating coefficients

a’(t,x) = (1.1 + sin(2mx/¢)) - (¢ +0.1), (60)

where ¢ = 1072 as before. In this case, the homogenization is not straightforward (in particular the coef-
ficient given by (59) has to be computed at each time step). The FD-HMM applies without modification.
The unique difference is that the relaxation time can depend on ¢ and should be for efficiency computed
several times during the integration process. For this example it is between 2 x 10~* (in the beginning) and
3 x 1077 (at the end). We show in Table 4 the obtained results. The macro time step is Af = 1 x 10~ for
N=1,...,29.

Small scale recovery. As explained in Section 2.2, to have a solution on the whole spatial domain, we do a
periodic extension of the solution computed in the ¢ cell. We choose the above problem with time inde-
pendent coefficient. In Table 5 we give the error of such extended solutions on a fine grid with Ax = 1,/2000,

Table 2
Error between homogenized solution and FD-HMM for increasing number of coarse steps (spatial discretization), ¢ = 0.01
nb Coarse Error (Euclidean) Error (maximum)
9 3.3422 x 1072 9.3635 x 107*
19 5.1147 x 1073 1.4329 x 10~
29 1.1901 x 1073 3.3342 x 1073
39 1.8688 x 10~3 5.2355x 1073
49 2.7043 x 1073 7.5763 x 1073
Table 3
Error between homogenized solution and FD-HMM for increasing number of coarse steps (spatial discretization), ¢ = 0.005
nb Coarse Error (Euclidean) Error (maximum)
9 3.6075 x 1072 1.0107 x 10~*
19 7.7111 x 1073 2.1604 x 10~
29 3.7964 x 1073 1.0637 x 10~
39 7.1352 x 10~ 1.9999 x 10-3
49 2.0955 x 10~ 3.4559 x 106
Table 4

Error between the exact and the FD-HMM solutions for time dependent oscillating coefficients and various number of coarse points
(spatial discretization)

nb Coarse Error (Euclidean) Error (maximum)
9 1.9281 x 1072 3.2979 x 1073
19 2.4209 x 1073 4.1409 x 107*

29 7.7147 x 1073 1.3196 x 10-3
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Table 5

Error between the solution with small scale recovering and a reference solution
Small scale (coarse) Error (Euclidean) Error (maximum)
1999 (9) 3.6706 x 1072 9.6945 x 10~
1999 (19) 1.8949 x 1072 2.2396 x 107*

the spatial discretization of the microscopic solver. The error is computed on the fine grid (compared with a
reference solution). We did the reconstruction starting with a coarse grid with N = 9 and N = 19 points.

3.3. Example 2: rough non-periodic (random) coefficient

We apply next the FD-HMM method at a problem with a rough (random) coefficient «*(x) known to
have an e-correlation. This ¢ will be the e-cell for the application of the finite difference method (see Section
2.2). This indicates how the method behaves for random correlated signal.

We briefly explain how we construct such an example. We first take an uniformly random distributed
signal s(x) in [0.1,1.1]. We next discretize the interval 0 <x< 1 in N equidistant point x;, We define a
“kernel” g°(x) such that

e/2
g(0)=1/e, gx)=0 ifx¢(—¢/2,¢/2) and gi(x)dx = 1. (61)
—&/2
For each point of the discretization x; we define
e/2
(o) = (g <)) = [ =25 @ (62)
—g/2

We chose
gix) = %(1 — sin2mx/e).

Finally, we take the same Eq. (56) as in the previous example and replace the oscillating coefficient by a*(x)
constructed above. The correlation was first chosen such that ¢ = 1072,
We plotted in Fig. 5 (left) the obtained signal. The relaxation time as shown in Fig. 4 is close to 3 x 107>,
In Fig. 5 (right) we plotted, the reference and the FD-HMM solutions for a mesh with nb = 29 coarse
points and in Table 6 we compare the error for mesh refinement (with nstep = 30,000).

Remark 5. Notice that we consider the exact solution as a deterministic problem with rough coefficient
generated “randomly” as explained above. We thus do not consider several realization, since the fine scale
signal a° is fixed. We generate this rough fine scale signal ¢° on a fine grid with Ax = 1/2000 and we used the
full resolution of the signal for the reference solution.

Dependence of the error on the size of the micro-cell. Unlike the case of periodic coefficients it is likely that
for rough coefficients with correlation, increasing the size of the cell for the microscopic solver, will improve
the result. In the following example, we took the same equation and coefficients as previously except the
fact that we decrease the value of ¢ to ¢ = 1073, For a given number of coarse point, we increase the number
of the cells for the microscopic solver between each coarse step.

We see in Tables 7 and 8 that choosing more &-cell decreases the error. Notice that even with larger cells,
FD-HMM is still more efficient for solving this problem than full scale resolution. For example choosing 5
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Fig. 4. The average flux p°(r) = Y _;_, a*(x;)(d/dx)u’ (¢, x;) for various e-cells.
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Fig. 5. Random correlated signal (left) and error between exact and FD-HMM solutions for 29 coarse points (right).

Table 6
Error between the exact and the FD-HMM solutions for increasing number of coarse points (spatial discretization)
Coarse step Error (Euclidean) Error (maximum)
9 1.0771 x 107! 5.7194 x 107*
19 1.3617 x 107! 7.5779 x 1074
29 4.0441 x 1072 2.0062 x 107*
39 3.6209 x 1072 1.8660 x 10~*

49 1.2189 x 10! 6.6998 x 10~*
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Table 7
Error between the exact and the FD-HMM solutions for increasing number of cells, 9 coarse points
nb Cells Error (Euclidean) Error (maximum) nb Cells Error (Euclidean) Error (maximum)
1 1.5661 x 107! 8.5611 x 10~* 15 1.7133 x 1072 1.3260 x 107*
5 3.5796 x 1072 1.9935 x 104 20 1.4452 x 102 1.0827 x 10~*
10 1.7592 x 1072 1.1278 x 10~*
Table 8
Error between the exact and the FD-HMM solutions for increasing number of cells, 19 coarse points
nb Cells Error (Euclidean) Error (maximum) nb Cells Error (Euclidean) Error (maximum)
1 5.8031 x 10! 4.2010 x 10~* 15 1.1218 x 1072 9.6756 x 107>
5 3.1749 x 1072 1.5329 x 10~* 20 5.8617 x 1073 4.3328 x 107>
10 2.8356 x 1072 1.4710 x 104

e-cell, for nb =9 and for AZ = /20 (chosen as to have a good resolution of the small oscillation for the
microscopic solver) we have to solve 1050 equations for the cell problems (the main cost of the FD-HMM),
while the resolution by standard finite difference method, with & = 10~3, would need 19,999) equations for
the same resolution as used for the microscopic solver.

To choose in an automatic way the number of cells which should be taken, we can at selected time step
apply the FD-HMM method with different number of &-cells. The difference of the solutions (which should
tend to zero) gives an estimation of the appropriate (number of) &-cell.

As in the previous periodic example, the FD-HMM can be applied to problems with rough non-periodic
coefficients with time dependency.

3.4. Example 5: two dimensions

We consider the problem (1) in two dimensions with an oscillating coefficients given by

2
a”(xl,XQ) =aqa- (b + Sth)

where 7 is the identity matrix. The coefficient a° has oscillations which are not in one of the two spatial
directions.
We chose a = 0.5, b = 1.1 and ¢ = 0.04, Dirichlet boundary conditions and initial condition given by

u(0,x1,x3) = 10x; (1 — x1)xa (1 — x3). (64)

We plot in Fig. 6 (left) a reference solution (computed on a grid of 1999 x 1999 but displayed on a much
coarser grid).

The coarse solution is evolved on a spatial grid of 9 x 9 interior points, thus Ax = 1/10. For the cell
computation on 180 domains of measure & with ¢ = 0.04, we solve the original equations with a mesh of
size A¢ = ¢/20. A similar resolution for the original equation with standard finite difference, leads to a mesh
of 499 x 499 interior points.

The time evolution of the solution (from ¢t = 0 to ¢t = 0.1) is done in 1000 steps. We plot in Fig. 3 (right)
the result at = 0.1 for the FD-HMM.

Finally, we show in Fig. 7 how badly the solution is destroyed if we do not resolve the scale (we solve the
original equation with 9 x 9 interior points).
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Fig. 6. 2D oscillating parabolic PDEs, reference (left) and FD-HMM solutions (right).

Coarse resolution without FD-HMM

Fig. 7. 2D oscillating parabolic PDEs, resolution with 9 x 9 coarse points (spatial discretization) without using FD-HMM.

2d Rough non-periodic coefficients. We take the same problem as before, but with a°(x, ¢) given by
aj(x) 0
(t+0.1)( 0 az(x)),

where a;(x) and a,(x) are rough non-periodic (random) correlated coefficients constructed as in (62). The
coefficients are different but have both the same correlation ¢ = 1072,

The coarse solution is evolved on a spatial grid of 9 x 9 interior points, as in the previous example. For
the cell computation on 180 domains of length & with ¢ = 0.01 (the correlation length), we solve the ori-
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ginal equations with a mesh of size A¢ = ¢/20. A similar resolution for the original equation with standard
finite difference, leads to a mesh of 1999 x 1999 interior points. The time evolution of the solution (from
t=0to t=0.1) is done in 1000 steps. We obtain for the error err, = 5.56 x 10! and err,, = 3.06 x 107!
for the weighted Euclidean and maximum norm, respectively.
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